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Rigorous Coupled-Wave-Theory Analysis of
Dipole Scattering from a Three-Dimensional,
Inhomogeneous, Spherical Dielectric,
and Permeable System

John M. JaremSenior Member, |IEEE

Abstract—This paper presents a rigorous coupled-wave-theory and 3) the circular or spherical object is a dielectric-coated
analysis (RCWT) of the electromagnetic (EM) radiation, which  metallic object [1]-[5]. Concerning circular-cylindrical sys-
occurs when a centered electric dipole excites power and energyiams. the problem of determining plane-wave and line-source
in a general three-dimensional (3-D) inhomogeneous spherical T S . . .
system. The formulation of this paper consists of a multilayer scattering from eccentric circular dielectric systems (circular
state-variable (SV) analysis of Maxwell’s equations in spherical dielectric cylinders of varying dielectric value whose axes are
coordinates (the SV analysis used transverse-to-spherical EM-  not centered on a single line) has also been studied. Recently,
field components), as well as a presentation of the EM fields 4 complete solution to this problem has been obtained in [6],
which exist in the interior and exterior regions (which bound hich al . lete literat R tteri
the inhomogeneous spherical system). A detailed descriptionW Ich aiso Q'Ves a compee_ lera ure_ Su_rvey _O ch ering
of the matrix processing which is involved with finding the from eccentric and centered circular-cylindrical dielectric sys-
final EM fields of the overall system is given. Three numerical tems. Wu [7], [8] studies the problem of plane-wave scattering
examples of the RCWT method are studied. The first example from circular, homogeneous, anisotropic, dielectric cylindrical-

presents EM scattering when a centered dipole radiates through g systems. Concerning scattering from spherical systems,
a uniform material shell. In this example, numerical results of

the RCWT algorithm are compared with numerical results as Ren [9] studies scattering fro_m anisotropic homernequs
obtained by a Bessel-function matching algorithm, and excellent Spherical systems and also studies Greens’ functions associated
agreement was found between the two methods. The secondwith anisotropic homogeneous spherical systems. Ren [9]

example presde_nlts C?”tet:eﬂ di%‘."i r_ad_iatt_]ion when the _Sphﬁgc(a' gives a very complete literature survey of scattering from
system is a dielectric shell, which is inhomogeneous in theé,( : . . . .
) directions, and the third example presents centered dipole isotropic and anisotropic spherical systems.

radiation when the spherical system is inhomogeneous in the A prqblem concerning cirgular-cylindrical object scatter-
(v, 8, ) directions. Several examples and plots of the power ing, which has further received a great deal of attention,

diffracted into higher order modes by the inhomogeneity profiles js the problem of determining the scattering and radiation

are given. As the thickness of the inhomogeneous dielectric shelly 4t gccurs when the circular-cylindrical dielectric system
is increased, it is observed that, through diffraction, power is

increasingly depleted from lower order modes into higher modes. CONtaiNs a region whose permittivity is inhomogeneous and
The depletion of power from lower to higher order spherical periodic in they azimuthal direction [10]-[12]. The solution
modes with increasing shell thickness is noted to be very similar of this problem is of great interest in cylindrical-aperture
to the variation of diffraction-order power efficiency, which is  antenna theory [10] because of the fact that radial and az-
observed when the layer thickness of a planar transmission ;.\ wha| dielectric loading in front of a cylindrical-aperture
diffraction grating is increased. .
. o . . antenna can greatly alter and, therefore, possibly enhance the
'“detﬁ Term%?'ffraft“o_”’ inhomogeneious, rigorous coupled-  ragiation characteristics of the cylindrical-aperture antenna.
wave theory, oL scattering. Elsherbeni and Hamid [10] study EM transverse-magnetic
(TM [electric field parallel to the cylinder axis]), scattering
|. INTRODUCTION from the inhomogeneous radial dielectric-shell permittivity

N important and well-known problem in electromagnetierofile e(p; ¢) = Ea(PO/P)Q[W_— 6 cos (2¢)] whereeq, po, 7,

(EM) theory is the problem of determining the scatterin@ndé are constants defined in [10], apdind are cylindrical
that occurs when an EM wave is incident on a circulafoordinates. Homogeneous space occupies the interior and
cylindrical or spherical object. These problems have pe&pterior region to the dielectric shell, and the shell is assumed
extensively studied in the cases where: 1) the EM incidel@t P& homogeneous and infinite in theaxial direction. The
wave is an oblique or nonoblique plane wave; 2) the incideftethod of solution used by Elsherbeni and Hamid [10] consists

EM wave has been generated by a line source or dipole soui@®; 1) solving Maxwell's equations in Regions 1 and 3,
surrounding the dielectric shell in terms of Bessel functions;
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determine all the unknown constants of the system. In [12],
Elsherbeni and Tew again study the case of TM scattering
from a dielectric cylinder, but they extend their analysis to
dielectric permittivity profiles where(p, ¢) = (p/po)?[n —
& cos(my)].

Concerning the problem of EM scattering from

Az Electric Dipole

inhomogeneous-material systems, in a recent paper [13], >
the author generalized the work of [10]-[12] and presented y

an EM cyclindrical-solution algorithm to analyze radiation

and scattering from an isotropic [13] dielectric cylinder

system which has an arbitrary radial and azimuthl, ¢) Inhomogeneous
profile rather than the(p, ) profile used by [10]—[12]. The - Material Shell
solution profile in [13] was based on a recently developed EM Hy ey &(r.9.0) =&, +A4e(r.8,0)
planar-diffraction grating algorithm called rigorous coupled- #(r8,0) =py +Au(r.0,0)

wave theory (RCWT) [14]-[20]. The author [13] extended and _ _
generalized the work of Elsherbeat al. [10]_[12] and Wu Fig. 1. Geometry of the 3-D inhomogeneous spherical system.
[7], [8] and extended the RCWT planar diffraction algorithm

[14]-[20] to handle the analysis of isotropic inhomogeneoysoplem may be viewed as either a material shielded-antenna
dielectric cylinders [131. The aI_gonthm .of [13] studied thesoyrce problem or may be viewed as a material microwave-
case when the electric field is polarized parallel to t'l?avity problem, where the material cavity is formed from

cylindrical-material axis (TM case). _ the inhomogeneous dielectric and permeable material which
Concerning the problem of EM scattering fromgyrrounds the electric-dipole source.
inhomogeneous-material spherical systems, this author

has submitted a letter [21] describing how the RCWT
algorithm can be applied to the analysis of radiation and ||, RIGOrROUS COUPLED-WAVE-THEORY FORMULATION

scattering from a spherical inhomogeneous object. The Ietter.l.his section will be concerned with putting Maxwell's

[21] presented the basic spherical equations necessary, Rations in spherical coordinates into a form for which the

analyze an arbitrary three-dimensional (3-D) inhomogeneo ' . .
scatterer by the RCWT method, and also presented a simﬁleWT formulation can be implemented. The spherical system

example of dipole radiation from an inhomogeneous dielectr%Jhown In Fig. 1 is considered here. All coordinates will be
objecf Whichpwas azimuthally homogeneogus (varied in thagssumed normalized as = kot, a = kod, etc., where

; o = ko7, kg = , A is the free- length i
¢ direction but had no dependence in thedirection). The Fof, ko = 2m/A, Ais the free-space wavelength in

. . - A eters. In this figure, Region (< r < a) is assumed
spherical RCWT analysis of this paper will extend the resul% be a uniform rr?aterial w?[h the r(elative pe?mittivity and
of [21] in the following ways. First, the analysis of this

relative permeability:1, Region 3 § < r) is assumed to be a

paper W!" study examples Whgrg Fhe mhomogenqus Scatt.etﬁﬁfform material with the relative permittivitys and relative
has an inhomogeneous permittivity and permeability prOf'IBErmeabilityug, and Region 2 withs = cos (8), is assumed

which, in. additiqn to.var'ying arbitrarily in_ the .radial direction,to have an arbitrary inhomogeneous lossy relative permittivity

also_varles arb|t_rar|Iy n _the9 and ¢ d'r?Ct'OnS' _In [.21]’ e(r, v, ¢) and is assumed to have an inhomogeneous lossy

Elt}? |nhom(_)gene|t>r: varlatlorr: l\llvas_only in tr_ﬁe ﬁ'riﬁt'on'z relative permeabilityu(r, v, ¢). For generality, one assumes

b IS case |stmuc mt(?re cfa er;lglngd nume;rlcady an t[ ]tlﬂat EM radiation may impinge on the 3-D object from Region
ecause matrix _equations for all orders .l andn must 4 (e.g., a plane wave) or from Region 1 (e.g., a dipole source).

bﬁ SOI)I/_Ed rather(;[han atrr]nz;lt:z( equa’ilton iorzjlmt: 0 a?d dMaxwell’s equations of Region 2 will now be put into SV
all n. The second way that the results of [21] are exten m. If e(r, v, ¢) and u(r, v, ) are substituted into the

in this paper is that the basic spherical state-variable (S axwell’'s curl equations of Region 2, and the two Maxwell

equations and the interior—exterior Bessel-function equatign ; : . :
. o rl equations are expanded into thei, 8-, and ¢-field
of [21] will be modified to the general case when th d P ?

inhomogeneous scatterer and EM-source excitation is perio
in the ¢ coordinate over a regio®r /«, wherex is an integer
(« = 1,2, 3, ---) rather than being periodic over ju&tr,
as was presented in [21]. This is particularly useful as only

omponents, one finds that the longitudinal radial electric- and
Sgnetic-field components may be expressed in terms of the
transversd, ¢ electric- and magnetic-field components as

a centered-line excitation is considered in this paper. The B, =——r 1 - [aU@ + laUﬂ

third way that the results of [21] are extended is that full ge(r v, 9)r? | v =y Dy
radiated-power results for radiation from higher orderand H. — 1 {8 Se 1350} 1)
n spherical Bessel-Legendre modes are given, whereas in (v, )2 [ 9v oy B

[21], power results were given only fan = 0 modes.

This paper will be concerned with determining the EMvherey = (1 — v2)}/2, Sg = 7 Ey, S, = 7 sin 0 E,, Ug =
fields that result when a centered electric dipole radiategr Hy, U, = 7o sin § H,, andng = \/po/eo = 377 L.
inside a 3-D inhomogeneous-material system (see Fig. 1). TBigbstituting these equations into the remaining Maxwell curl
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equations, one finds represents a typical matrix element of the overall m&tﬁ_&
954 g 1 P {note that(i, m) is an ordered pair representing a single
=i - a—} Us integer in thee(® matrix [same for(i’, m’)]. The matrices
! LT oV En, 9ry 0% for the differential operator8/dv andd/d ¢ are given by the
jl-—r _ - . (2) diagonal matrices, respectively,
| v rZ Qv e(r, v, ) Ov
s, R [ 1 0 1 g D, = L7T617 i 6771,771’
8?:‘7 p(r, v, <P)’V+Ta——, a—}Ue - / ]
7 I r2y dp e(r, v, ) d¢ Dy, = [jmns;, S, m]
11 0 1 g
tilZ a7 5| Ue (3) ; i ibi
|72 B e(r, v, @) dv whereé; ;- is the Kronecker delta, and the matrices describing
QUs [~y O 1 7] the modal field amplitudes are given by column matrices e.g.,
ar |72 v pul(r, v, ©)y O 4 ﬁ = [Sgéz_’m)]t (¢t is transpose). Replacing each inhomo-
Te(r,v, ) v 8 1 K geneous factor, derivative operator, and field amplitude by
TJ 5 - 72 v pulr, v, @) 8_11} Se 4 the appropriate matrix, the overall system SV matrix may be
ou ) 1 8 1 9 found. The first right-hand term of (2), for example, is given by
LAl N - - -
or _J{ 0 D B e, v, 9) &JSe

—G/ ) (D (KL, (Dy Ua)]Y) = A, Us

+i| 5% sos s o0 )5+ ©
2 N(ﬁ v, <P) 81} ([) .
where y and K;).., matrices represent the factoygv) and
The concern will now be with developing a multilayer mid _ (0 _
RCWT analysis that can be used to solve (2)—(5) in Region 2[€("i", v, ¥)7(v)], respectively. The matrixi, ;, which -
To proceed, one divides Region@2< r < b, into L thin layers Was just formed, represents a square component sup—matnx of
of width d;, whereb — o = Eszl d,. One assumes that eacHhe overall state matmﬁ. All component, sub-matrices
layer has been made thin enough so that all inhomogeneous
functions in the radial coordinate on the right-hand side A“)@, (o, B)=(1, 4)
(RHS) of (2)-(5) may be considered constant in the thin-shell s
region and may be approximated by the midpoint valueiof  of the overall state matrid(9) are defined in the same way as

the thin layer. In each thin spherical shell, it is convenient to 6 . —_— . .
introduce the local coordinates = r — b for b—dy < < b wasA1 5 (Since the component submatrices can be defined

so =r—(b—d)forb—dy —dy <7 < b—dy,- by in_sp’ection of (2)—(5), it is not necessary to list the
These local coordinates will be used to express the final
SV equations in each cylindrical shell. In tiéh thin-shell

layer, (2)—(5) are put in SV form in the local coordinatgs . - . .
by expanding all field variables and inhomogeneous facto;psatnces specifically). The overall SV equations, determined

5(7,?1”7 v, ©), 1), l/u(r;“id, v, @), - - (these functions are rom (2)—(5) in theftth thin-shell layer, is given by

© _
éa,,@’ (Oé, /3) - (17 4)

assumed sampled at tifen radial midpointr3*id) in a two- %0,
dimensional (2-D) exponential Fourier series, collecting terms — — AOy©, £=1,2,3,---, L (6)
together which have the same exponential coefficient factors, St -
and forming a set of first-order differential equations foghere
the mode amplitudesSéon, Sgi)m, Uéfr)n, Ugi)m. The mode - © © 1
amplitude expansion foﬁéé)(sé, 8, v), for example, is given 0 0 @ @
by $§7(s6,8,0) = i Sim(s0) exp[ilimv+mne)], 0o o a¥ AP,
where —A,/2 < ¢ < A,/2, -1 < v <1, k=2r/A, = A0 — = ==
1,2, 3, ---, may be called the azimuthal-grating wave vector — 4 49, o 0
andA, may be called the azimuthal-grating period. The matrix = ==
for a general inhomogeneous factor, sayid, v, ¢), for Aff)l Aff)Q 0 0
example, is — -
- g(o
E(Z) = [E(Z) = [E i—i’,rn—rn’] SL
5 —(¢, m), (¢/,m’) ()
©_ |2
where V¥ = ? . @)
_ Us”
Ei—i,m—m'
9

are the 2-D Fourier coefficients efrid, v, ) and

© If the overall SV equation is truncated withj < Iy and
£

Im| < My, then A®) is a Pr x Pr square matrix with

(¢, m), (¢/,m') i
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Pr =421y + 1)(2Mr1 + 1). The solution of the overall SV of Region 2 (inhomogeneous region). The fields in Regions

matrix solution is given by 1 and 3, as is well known, can be expressed in terms of an
infinite number oftransverse to: electric(TE,.) andtransverse
V(Z)(SZ),, = V(Z),, €Xp [qﬁ)‘)sd to » magnetic(TM,.) Schelkunoff spherical-vector potential
) ) modes [3, Ch. 6]. These vector potential modes consist of
where q:,(,é) and V(f)p (p = 1,---, Pr) are the eigenvalues half-order radial Bessel and Hankel functions and consist of

Tesseral harmonics (products of Legendre polynomials and
exponential functions). The scattered field portions of the
egion—1 and Region—3 Bessel- and Hankel-function solution
For example, if|i| < Ir, [m| < Mz, (p = 1, -+, Pp), a][ef_chosen to satrl]sfy thg usua(ljstr))h_erlcal boundgry conditions
h theS(Q}é)( ) field is given b S(“)(s v, ) = of finiteness at the origin, and being an outgoing wave at
then ! 56,0, ¥ 9 Yoq &Y% ¥)= infinity. In this paper, the incident field in Region 1 is the
) Cé) S(Z) e O] (4 h . NP . .

i m,pOp Seimp €XPlap” se + j(imv + mrp)] where Ew field of an infinitesimal dipole. The basic EM boundary-
Sg?mp is thepth eigenvector component S@Z) , inthe overall matching procedure to be followed in this paper is to equate
. © © . .__the tangential electric fields at the interfages: ¢ andr = b,
eigenvector}V*) andC,~ are unknown EM-field expansion _ .~ . : . ) .

— eliminate unknown field constants in Regions 1 and 3 in favor

coefficients. . . of the field constants in Region 2 from these equations, equate

Alth_ough a large matrix quat'on could be formed fro%etangential magnetic fields at the interfaces a andr = b,
matching EM boundary conditions at= a, r = b, and at g pqsitte the electric-field matching Region 2 constants into
each thm"?‘h.e“ layer .|nterface N _the inhomogeneous regiqfe magnetic-field matching equations. This general procedure
a more efficient sqlutlon method is to use a Igdder approa; recisely the one followed by [15], [18], [20] in the analysis
[18] (i.e., successively relate UHE(P)OWH c_o_efﬂments from ONt diffraction from planar diffraction gratings. Equating the
layer to the next) to express tifg; ™ coefficients of thelth o mmon terms ofexp (jrmy) of the S,, (v) and S..,,(v)
thin-shell layer (located in the layer adjacentito= a) i fqq components at =  from Regions 1 and 2 one has
terms of theC,(,l) coefficients (located in the layer adjacent

and eigenvectors, respectively, of the SV matplﬁ. The
overall EM-field solution in each thin-shell region can b%
found by adding a linear combination of tlig eigensolutions.

to » = b), and then match boundary conditionsrat « and S$H (v) = S5 50 (1) 4 51 N (4,
r = b interfaces to obtain the final unknowns of the system. _S(Q,a)( ) (15)
At the /th and (£ 4+ 1)th interface, matching the tangential . B 91"5 :} L ING
magnetic and electric fields, one has 5&%(”) :Sg(mh Ca )(U) + Sg(mh )(U)
Q- O —oOd (€+1) =587 (v) (16)
CLOSH emald = N gl gl 8)
pzz:l P gimp pzz:l P gimp Where
Pr Pr ca
Z cOglO —agPde _ Z cle+D) g+ (9) Séiﬁs t)(v)
s poemp o P b Ir  (2Ir+lem|4+6m,0
D Pr = Z Z [Efilz)mnFr(nlr)L + E](’E'-lz)mnAgrll%]
0 _gPg, o+1 — _
Z C},Z)Ug(iilpe a0 de Z C]()é—i—l)U@(inlp) (10) i=—Ig ‘rbl_|nm|+6m,0
p=1 p=1 - exp (jimv) a7)
Pr Pr (1, Scat)
: S (v)
OO —¢(9dy _ £41) prE+1) Pm
z—:1 C]() )U‘Pimpe v = z_:l CI() )U‘Pimp : (11) Ir 217+ km|+6m, 0
- ” =3 ¢ X |EELER B AR
Letting @ = [Cfé), s C}Q]H these equations may be i=—Ir | n=lrml+6m, 0
written - exp (jimv) (18)
@~ _ &) A(e+1)
D_— ¢ = D_+C_ (12) where
or —JKrm
¢y = Y] B == In(510)6n
=r® o, ¢=1,---,L-1 (13) E](;i)m _ ;Tjjrll(ﬁla)ggnn
p— 1
where the—l superscript denotes matrix inverse. Substituting Egi)m _ ijn(ﬁla)gicr;m
successively, one has
o) = pE-DpE=2¢ . 1p) oW ...} and 1y _ Km >
Dim — 3—‘]7/1 (ﬁla)ginln'
—M oW, (14) B
Another important problem is to relate the fields of Regiohetting gam. = (1 — v2)=2PF™(v), gpmn = —(1 -

1 (interior region) and Region 3 (exterior region) to the fields?)L/28/0u[Pr™ (v)], gomn = —(1 — v?)3/0u[PrF™ (v)],
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and gpmn = PI""l(v) where P*™(v) are associated Le- —Ir, -+, Ir, and IettingSéf;l“) = {Séfn)lp exp -5 s] b
gendre functions [3] of order. and |xm/|, the coefficients L(2,a) (D) M. P

Gitins Ghrns 95mn» @Ndg ) represent the exponential FourieE=22— — {5 i eXI;_[ dqp hSLf]I]I> fo.r ' I.T’ ’ I.T a.md
series-expansion coefficients for the terms,. (v), gpmn(v), p=1,---, Pr, one finds the following matrix equation:
gomn(v), and gpmn(v), respectively, on the intervatl < B
v < 1 [gamn(v) = X, Gimn exp (jimv)]. In the present  §(2.0) o) = |=——

o)
analysis, the Fourier coefficients andg? S&%;ﬁ

mnt Jimnr Jimno

have been determinedxactly by calculating higher order E(?) g W (1, INC)

derivatives of the Bessel-function integral representation given _|ZAm ZBm | [ Dm " S

in [22, eqg. (9.1.20), p. 360]. The exact calculation of these o Egr)n E](jlr)n Ag}l) S&LINC)

Fourier coefficients is an !mportant step i_n order to ensure — O

overall accuracy of the entire RCWT algorithm. The terms —EWD ml + S INC) 1)
S(l,INC)(v) _ Z S(l,INC) exp (jimv) gn) m

om gim
4 ‘ where S is a [2(2Iy + 1)] x Py matrix, ESY is a
an =

@om @im a 2(2Iy + 1) column matrix.
To proceed further, one matches the terms common to

represent electric-field EM incident waves evaluated ata, exp (jxme) of the tangential magnetic field at the Region-1,
which emanate from Region 1. In this paper, it is assumegbgion-2 interface at = « and finds

that a centered electric dipole excites EM radiation in the

20217 + 1 221y + 1)] square matrix, and’s N is

, Sca ,INC
overall system and for this source it is fous§: ™ () = Upn(®) = Uy 5™ (0) + Uy, ™ ()
G/ B) AL LB (Bra)[L — v 26,0, SEx™ (v) = 0, and = U (v) (22)
A .
Ap, 1 is the strength of the electric-dipole source. In (15)—(18), Uf;,)l(v) _ U(S;lScat)(v) + U(S;lINC) (v)

B = /€1, jn(ﬁla) are spherical Schelkunoff-Bessel func-

tions [3], the prime in (15)—(18) represents differentiation with

regard to the argument. Fet # 0, the lowern limits start at \where

|xm| since the Legendre polynomials are zero when/| > n. (1, Seat)
The termsS$* @ (v) and S (v) represent the SV solution Usm (v)

om

in Region 2 in theLth thin-shell layer region evaluated at Ir {2IT+|nm|+6m,o
]

=UZ(v) (23)

r = o and are given by = Z [HS D+ HE, AL,

t=—I7

Ir Pr n=|km|+6m, o
Sy = Y {Z CfP) Sty exp [—q,@”sL]} - exp (jimo) (24)
==, L=t U (0)
1 €Xp (JLWU) Ir 2I7+|rm|+6m, 0
Ir _ CORAEY) 1) 40
= Hy, F H;. A
= Y 8 exp(jinv) (19) i:z_:h n=|m%:+5 [ P+ HE L 460
i=—1Ir 3 e
. Pr - exp (jimv) (25)
a L
5‘5927;1 )(U) = Z {Z CI(’L)SSOHZH) exp [_ql()L)SL]} where
i=—Ir \p=1 .
JRIM 4 ;
+ €Xp (JLWU) Hz(kllzn = J—Jn(ﬁl a)g;‘énn
It u.l
= 3 G ewim). (20) Hi = 5 (gl
i=—Ir 1
-1 .
When I is infinite, the boundary matching equations given H(Clz)m =—Jn(BLa)g5mm
by (15)—(20) are exact. Wheil; is truncated at a finite and 1
value, and common coefficients afkp (jirv) in (15)—(20) 1y _ Km 5, IS
are collected, (15)—(20) give[a(2I7 + 1)] x [2(2I7 + 1)] set Hpin = /B—l‘]n(ﬁla)girnn'
of equations from which thet't), and F\%) can be expressed LN LN
in terms of the Region—2 unknown coefficier$™ . Letting Thle I;grms U (V) I?NCEZ‘ Ugin  €xp (jimv) and
S EW EL) and B be matrices representing (17),U<,(97771 ") = Uéi;n ) exp (jirv) represent the

magnetic-field incident waves which may emanate
s I 5 ot from Region 1. In this paper, Uf;};lINC) (v) =
n = |Kkm |+ O6mo -, 2I7 +| km | + Om,of, lETN I A .2 (LINC), \__
S(l’ IN|C) _ [|S(1’ INé;)] and S,(ZL INC|) _ [!9(1’ INc)O]} for i _g ( 1/”1 ) AO, lHl (ﬁla) [1 v ]6771, 0 and Uern (U) =0 for
om = Poim pm = Peim * = a centered electric-dipole source. The terbfb%;“)(v) and

18), e.g.EY), = [EY

Aimn

|, wherei = —Ip, ---, I and
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US: (v) represent the SV solution in Region 2 in thith A, A, A, -, are multiplied by first derivative in
thin-shell layer region evaluated at= a and are given by  Legendre polynomialsd/ov [P(v)], 9/0v[PY(v)], ---,

Ir Pr which are odd inv. This means that when determining
U Dwy =" {Z DU exp [—qﬁ,L)sL]} the m = 0, Region-1 coefficientsFy", and A{",, that
i=—Ir \p=1 the best numerical processing in (21) is to decompose
- exp (jimv) SEND Gy, SGND (w), 55D (v), G (v) for m = 0
It into a sum of even and odd functions, and from the even
= > U exp (jinv) (26) functions in (17), (18) determingy'), Fy'3, F¢!d,---, and
i=—Ir AL A8 A ... and from the odd functions in (17), (18)
v (Dr termine 78 0 @) 1) 4@ 4@
(2,a) () — (Lyrr(L) _ D determine Fy 5, Fo 'y, gy oo+, and Ay, Ay, Ag gy v
Ugn (v) Z; {;;2—:1 Cp U gimp €xP [—p SL]} The specific matrix processing that is carried out for, say,
D the Fo(li, Fél?),, Félg, .-+, coefficients is as follows. After
-exp (jinv) Co . (1,INC) (2,a) :
Ir decomposingSg:, ' (v) and S (112 for m = 0 into even
=Y UG exp (jimv). (27) and odd functions of, Fg1, Fy'3, Fy'd, -+, is determined
i=—1Ir by: 1) expanding the even function part cﬁ&l,;lINC)(v)
Equating common coefficients afxp (jirv) in (22)—(27), and Sff,;ﬂ)(v) for m = 0 in a {cos(imv)}Z, cosine
a similar matrix equation as was formed for the tangentigkries (The{cos (iﬂv)}fio series expansion offf,;f)(v) for
electric-field components may be formed for the tangentia) — ¢ depends on the?$™, p = 1, .-, P coefficients
magnetic-field components. One has in Region 2 and the{cos (inv)}Z, series expansion of
éf,;a) S&l,;lINC)(v) for m = 0 depends on the incident EM-
U'r(nQ o) = @, a) (L) source waves which emanate from Region 1.); 2) expanding
| Yem the first derivative Legendre polynomiab/dv[P?(v)],
gL g ) {7 (L INO) /v P (v)], e in a {cos (i@)}{go .series; 3)quuating
_ | Am LU R et common coefficients of the cosine serigss (inv)};Z,; and
HY H(Cl) AG) U INe) 4) from these equations, developing & + 1)x(I7 + 1)
— 5 = matrix equation, which upon matrix inversion expresses
L 1) 1) ) i i
™ the Iy, Fy 5, Fo5, -+, coefficients in terms of the
=H{ |~ 5|+ U™, 8) o T i - inci
=_m_ Agi) = Cy’,p =1, -, Pp coefficients of Region 2 and incident

To proceed further, this paper's objective now is to eliminatEM-Wave coefficients of Region 1. The determination of the
’ J (1), FsH, F§', -+, coefficients is found by: 1) expanding

the column matri>{F,(,3), Aﬁ,ll)]t from (21) and, therefore, form 0.2’ : (1, INC) @, a)
a single matrix equation for the'(®) coefficients alone. By thedoid-fuggtlgn part OST" g}) andISWn %}) for ”3 =0
inspecting the matrix equation (21) and their definitions, orft! the o erivative Legendre polynomidlgdu[F; (v)],

0 ; : C s It iag- i
notices that two distinct cases arise, namely the cases Wr?e[ﬁ%[P‘* (v)] fur?c.nons n a{.sm.(mv)hf:_l series; 2) equating
m £ 0 and the case whem = 0. In the case ofn % 0, common coefficients of{sin (imv)} and 3) and then

=11
it turns out that the matriceE,(,P and H,(,i) are nonsingular, forming an I x Iy matrix equation which, upon matrix

o _ = inversion, expresses thl@o(}%, Fé}i, Fé}();, -+ -, coefficients in
therefore, it is straightforward to inved,,” and solve for ..o theCS™,p = 1, ..., Pr coefficients of Region
[F,(,i), Aﬁ,ll)]t. For m # 0, one finds 2 and incident EM-wave coefficients of Region 1. After

PO following the above procedure, and combining the even-
T Z DT @ o)) - )T gL INO) and odd-matrix expressions faF(Y, Fi1, F{Y, -, and
1 m m m ? ? ?
AR Fé}%, Fo(jli, Fé}();, <o, a(2ly +1) x (2Ir 4+ 1) matrix relation
=2z0W — B N9 (29) is found between the overalFyl), K'Y}, Fs'), Fy'), -,
L i (r) . _ ici
The determination off’) and A, (n = 1,2,3,..) coefficients and the,”, p = 1, ..., Pr coefficients and

EM-incident-wave coefficients of Region 1. A similar even

coefficients for them = 0 case requires special matrix . ) .
" g P and odd analysis allows@I;+1) x (217 +1) matrix relation

processing. One first notes for thes = 0 case that 1 N (L)
between thed; ;, coefficients and th&;™, p =1, ---, Pr

ESﬁn = E&)m = 0 in (17), (18), and thus, the matrix o . . L

. 1) 1) coefficients of Region 2 and EM-incident-wave coefficients
equations for [, ;, and 4, are decoupled from one . o oy ~Apogether ther™ and A%, coefiicients for
another. One also observes from (17), (18) that when 9 i 9 0,n 0,n

solving for either Félfl and A((f)n, that the coefficients """~ 0 in matrix form may be expressed as

1 (1, F)
of F0(71%7 Fé}?),, Fé}g,..., and A&)l, A((f)g, A((f)s, ..., are Fé ) B Zo ' o) _ pAINC)
multiplied by the first derivative Legendre polynomials AL o 0 74 =0
9)ov [P°(v)], 9/ov [PY(v)], ---, which are even in —— =

1 1,INC
v, whereas the coefficients ofy, Fy'), Fy'3, -+, and =z e — g ™No (30)
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where the matrixZél) is size [2(2I7 + 1)] x [2(2I7 + by them andn spherical mode into a sphere located at a radius
1)]. Substituting [157(;3_ Aﬁ,ll) |t from (29) n # 0) and ” divided by the tota_l power radigte_d_ by th_e centered dipol_e
[Fél) A(()l) ]t of (30) (m = 0) into (28) one finds when the centered dipole is in an infinite region whose material
e — parameters are those of Region 1, namghand j;.

(2,0) _ 77(1) (L) _ 7r(LINC) _ 77(1) (1, INC)
(U Hy,'Z,’|1C = Uy, H, Ey, (31) lI. NUMERICAL RESULTS

. Z1,0,1, -, My. For eachm, (31) ) In t|h|_s sefctloE, thedRCV(\j/T n:jethod of ?jeé:nlo? I:d|s |IIEstratedI
has2(2I7 + 1) rows. y solving for the radiated and scattere ields, that result

The boundary matching analysis at the= b interface is when the Region-2 inhomogeneous-material shell is assumed

identical to that at* = @ and the boundary matching equationé0 have, as a specific example, the form
at ther = b interface are given by (15)—(31) if: 1) one replaces e(r, 0, ) =2 + Aey sin (6) sgn[cos (6)]
Region-lsupersgripts wittRegion-3superscripts; 2) one re- 1+ Ae(r) sgn(e)]
places the spherical Schelkunoff-Bessel functig(ys; «) with 211/2

. . . =e9 + Agg[l — v7]/* sgn(v)
the outgoing spherical Schelkunoff-Hankel function of the

wherem = —Mr, ---

second kind, namely,, (3sb); 3) one replaces>“ (v) and [+ Aeg(r) sgn(e)],
SZ@ (v in (19), (20) with the? = 1 thin-shell SV solution 1i(ry 8, ) = 2 (36)
evaluated at- = b, namely where sgiX) = 1, X > 0 and sgiiX) = —1, X < 0. For
Ir Py this profile,x = 1. This inhomogeneity profile is a convenient
S0y — cWOsW L (iirw one to use, since if it is integrated over a spherical surface of
om (V) i;T {pz::l i elmp} o jénv) radius r, its average or bulk value is always, regardless
Ir of the value of Aey or Ae, used. Using this dielectric
= Z Sé?;,f) exp (jimv) (32) inhomogeneity profile, three cases will be studied—namely the
i=— Iy cases whenAegy = 0.001, Ae(r) = 0.001 (Case 1);Aeg =
Iy Py 2.8, Aey(r) = 0.4 (Case 2); and\ey = 2.8, Ae(7) = arr+
SENw) = Y {Z OIS”SSBHP} exp (jirv) ay (Case 3), wheree, (r)].=5 = 0.6 and Acy(r)|y=s 5 =
i=—Ir (p=1 0.15 fora < r < b, a =5 andb = 5.5. For all numerical

Ir examples of this paper, the bulk material parameters will be
= > S&Y exp(jimv) (33) taken to bes; = 1.5, iy = 1, 63 = 7, pig = 1.3, &3 = 1,
i=—Ir and ;3 = 1. The first case, which because of the small

: L .values ofAey and Ae,, may be called a homogeneous-profile
and 4) one sets all Region-3 incident source terms to zero since o ® Y 9 P

EM energy in this paper is assumed to emanate only fromase represents the application of the RCWT method to the
lution of the problem of determining the EM radiation that

Region-1 centered-dipole source. After algebra, it is found thag ) ; .
the Region-3 boundary equations are occurs when a centered dipole radiates through a uniform

dielectric shell. Since this problem of EM radiation through
U0 — H® z@oW =y IO _ & g INC) (34)  a homogeneous dielectric shell can be solved exactly by
- matching Bessel-function solutions in Regions 1, 2, and 3,
wherem = —Mrp, -+, -1,0,1,---, My and where the comparison of the RCWT method with the exact Bessel-
RHS of (34) for this paper is zero. For eaeh, (34) has function matching solution represents a numerical validation
2(2Ir + 1) rows. Using C®) = MCWM from (14), one of the RCWT method if close numerical results from the two
eliminates theC(™) column matrix and find methods occur.
The second case, which may be designatedfay)-
U~ B ZGNMCW = U™ — @Eﬁ’mc) inhomogeneity-profile case, represents an inhgmog)eneous
(35) example in which the dielectric shell is homogeneous in
where m = —Mrp,---,=1,0,1,---, Mp. Including all the radial+ direction, but is inhomogeneous in tifleand ¢
values ofm, (34) and (35) each represd@f/r+1]x[2(2I7+  coordinates. This case will be solved by both a single-layer
1)] = Pr/2 equations forC). Thus, (34) and (35) representRcwT algorithm and will be solved by a using multilayer
together, aPr x Pr matrix equation from Whic@ may RCWT algorithm. The purpose of solving this second case
be determined. From knowledge 6f1) all other unknown is to observe, in general, how much diffraction occurs in
constants of the system may be determined. higher order spherical modes when a reasonably ldrgad
Once all of the EM-field coefficients are determined, ong inhomogeneity-material profile is present in the dielectric
may calculate the power which is radiated in Regions 1 astiell. The purpose of comparing single-layer and multilayer
3 of the system. The radiated power, which is associated WRCWT results is to observe the importance that the scale
a givenm and n spherical mode, is well known and thefactors of (2)—(5) have on the overall scattering solution. The
specific formulas may be found in [3, Ch. 6]. In this papepurpose is also to study how well the power conservation law
numerical results will be given in terms of normalized poweis obeyed numerically. Power conservation at different radial
The normalized power of a givein andn spherical mode at distances is a good indication of the accuracy of the numerical
radial distance is defined here as the power which is radiatesblution in a lossless system such as the present one.
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The third case, which may be designated(sa 6, ¢)-
inhomogeneity-profile case, represents a solution of the RCWT
method under the most general conditions, hamely when the
inhomogeneity variation occurs in thre#, andy coordinates.
The radial inhomogeneity variation has been chosen to vary
in such a way that the magnitude of the variation in
the inhomogeneity-profile changes linearly. Single and mul-
tilayer analyses have been studied in order to gauge the

Bessel matching, r=a,b

/

377
32

27t
RCWT, r=a,b

(multi-layer analysis)

227t

171 (single layer analysis)

Radiated Power/Dipole Power

effect of the radial inhomogeneity variation of tite 8, ¢)- - b—a—»ﬁ
inhomogeneity-profile case relative to that of tlie, ¢)- 2= = = S =
inhomogeneity-profile case. The purpose of studying this case Inner Radius a ( radians ) '

s IQ S-ee the eﬁeCt-’ in ggneral, that a fu-”y 3-D inhomc’geneipi/g 2. Normalized total power as obtained by the RCWT method compared
variation has on diffraction and .scatterlng !nto higher Order{%‘ ihé total normalized power as obtained by matching Bessel-function
The purpose also of Case 3, as in Case 2, is to study how wgllitions at the interfaces = « andr = b.

the power conservation law is obeyed numerically.

Fig. 2 shows a comparison of the normalized power radiated
through a uniform-material shell when calculated by a Bessel-
function matching algorithm (exact solution), when calculated
by a single-layer RCWT analysis, and when calculated by a
multilayer RCWT analysis. Ten layerd (= 10) were used to
make all multilayer calculations in this paper. In Fig. 2, the
normalized power by all methods has been calculated both at
7 = g andr = b (The label = a, b means calculated at= «
and calculated at = b). In Fig. 2, the outer radius is fixed
at b = 5.5 (radians or rad) and the inner radiusis varied
from 5 to 5.45 rad. As can be seen from Fig. 2, one notices
that there is excellent numerical agreement between the three
methods used. One also notices from Fig. 2 thatitkea, b g_ig- 3;, A ﬁ{ﬂp?ﬂsontmbthe fOti' nOflma'izet% powers tﬂat occur I‘Nhle‘ft‘ g‘et
power results for each of the three methods are so close; &}y Geceettumoton maiching) and when the dieiectic shel s taken
r = a andr = b that the two power curves for each methoeb be a(6, ,»)-inhomogeneity profile withthey = 2.8, Ae(r) = 0.4 (Case
cannot be distinguished from one another. In Fig. 2, the RCV\F Here, the power is calculatedat= a, b by a single-layer analysis and a

. . multilayer analysis. Then = 0, n = 1 order power is also shown.
algorithm was calculated usinfr = 1 andIr = 5. Because
the inhomogeneity factor in this case was very close to that of a
perfectly homogeneous shell, the RCWT algorithm could hay€ase 2]. The power here is calculated rat= «a, b by a
calculated the power of this case using a valueMf = 0 single-layer analysis and a multilayer analysis. As can be seen
and Iy = 5, which would have meant a significantly smallefrom Fig. 3, the presence of thé, ¢)-inhomogeneity profile
matrix equation than would have resulted fraviy = 1. A causes a marked difference in the total scattered power of the
larger matrix equation than necessary was solved for this casleomogeneous shell, despite the fact that the bulk dielectric
in order to test the numerical stability of the algorithm and alsnhomogeneity profile was exactly the same as that of the
to test the sensitivity of the RCWT solution to error in theiniform homogeneous shell. It is also noticed from Fig. 3, that
Fourier coefficients. (Error in the Fourier coefficients woulfor both the single and multilayer analyses, the law of power
arise for My = 1 because numerical integration is used toonservation at = a andr» = b is obeyed to a reasonable
calculate theexp (ym¢), m = —1, 0, 1 Fourier coefficients, degree of accuracy. Also plotted in Fig. 3isthe=0,n =1
and thus, instead of thes = +1 coefficients being exactly power atr = «. It is noticed that then = 0, n = 1(8, ¢)-
zero, they would have some small value.) THg = 1 matrix inhomogeneity-profile power at = a almost exactly equals
solution showed no ill-conditioned effects from using a largehat of the total power at = a, b. This indicates that at = a,
than needed matrix size and showed no sensitivity to errorno power has been diffracted into higher order modes at the
the Fourier coefficients. A RCWT analysis was also carried otit= « interior boundary shell interface of the system. Fig. 3
using Mz = 1 andIr = 2. In this case, the RCWT algorithmalso shows thern = 0, n = 1 power as calculated at = b.
differed perceptibly from the Bessel matching solution. Thisrom this plot, one observes that the= 0, n = 1 power is
indicates that for accurate results, enough Fourier harmosignificantly lower than the- = «a, b total-power plots. This
terms must be included to correctly calculate the SV solutiatearly indicates that as the EM waves have radiated through
of (2)-(5). the dielectric shell, power has been diffracted into the n

Fig. 3 shows a comparison of the total normalized powehsgher order modes of the system. The dielectric shell is acting
that occur when the dielectric shell is taken to be a uniformery much like a planar diffraction grating, which is operating
layer (the power here is calculatedrat b by Bessel-function in a transmission mode of operation.
matching) and when the dielectric shell is taken to be aFig. 4 shows plots of the =2, m =0, andn =4, m =0
(8, )-inhomogeneity profile witheg = 2.8, Ae,(r) = 0.4 mode order power at = b for the same#, ¢)-inhomogeneity

Total Power, (6,¢)-Inh. Layer, r=a,b
(single layer analysis)
(multi-layer analysis)
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. 2.(1)3 n=2.m=0, r=b g Total Power, Uniform Shell
g (single layer analysis) 33'7 Total Power (0,¢)-Inh. Shell, r=a,b
o 008 . ) Py (single layer analysis)
O o7 (multi-layer analysis) 532 . ]
g A ey e 3= (multi-layer analysis)
2 n=4,m=0, r=b 2
50061 4 Q
5 005 * 4——— (single) 527 Totat Power
c;) 004 Yt (multi-layer) % (r,O,(p).-lnh. Shell, r=a,b
o %2.2 3 \ (multi-layer analysis)
G003} * ol m=0,n=1 Power
® L - i o : :
k 002 - - b-aw! 9 1.7 | (0,9)-Inh. Shell, r=| “bae
Y 001 A ! x (r.0,¢)-Inh. Shell, r= : :
. . R e S , 12k . ,
5.0 5.1 52 53 54 55 50 51 52 53 54 55
Inner Radius a ( radians ) Inner Radius a ( radians )

Fig. 4. Plots ofthe» = 2, m = 0 andn = 4, m = 0 mode order power for Fig. 6. Plot of the total normalized power that results when the

the same(8, »)-inhomogeneity profile, as was studied in Fig. 3, are showrr, 8, ¢)inhomogeneity profile of Case 3 was solved using a multilayer

Then = 3, 5 (m = 0) orders were very small and not plotted. RCWT analysis and using/,, = 4 andI,, = 5 is shown. Also shown for
comparison, is the total power of a uniform shell system (Case 1 parameters)
and the total power when &, ¢) inhomogeneity profile was used with

4 Ae,(r) set to a constant value dke(r) = .375.
5 0.08 Y
g 007 gln‘gl-golglleﬁzvrzg[ysrl_st)) . :
2 o0 E(mum layer analysis) Iy = 5. Also shown for comparison is the total power of a
& 005 uniform shell system (Case 1 parameters) and the total power
§ ooal ™3 that results when @, ¢)-inhomogeneity profile was used with
| "<, nm Order Power, r=b Ae,(r) set to a constant value dfe () = 0.375. This value
RIS y ingle Jayer analysis) of Ae,(r) exactly equaled the average radial value of the
3 oot , e bar Ae,(r) function of Case 3 over the interval< » < b, a =5
o : ‘ : : : : rad andb = 5.5 rad. As can be seen from Fig. 6, the.(r)

50 5.1 52 53 54 55 linear taper causes little difference in total power to be seen

Inner Radius a ( radians ) between the total power of the, 8, ¢)-inhomogeneity profile

Fig. 5. Plots of then = 1 total power (formed by summing alh = 1, Of Case 3 and the total power of tH{€, ¢)-inhomogeneity
n=1,2,3,..., mode powers) as computed by using a multilayer analysproﬂle that used a constant value A, ( ) = 0.375. One
(dotted-line tr|ang|e) and using a single-layer analysis (solid line) are ShOVWOtlceS from Fig. 6 that power conservation was observed to
hold to a reasonable degree of accuracy. Fig. 6 also shows a
profile as was studied in Fig. 3. The= 3, 5 (m = 0) orders plot of them = 0, n = 1 order power calculated at= b rad
were very small and not plotted. As can be seen from Fitpr the two inhomogeneity profiles for which the total power
4, as the inhomogeneous-shell-thicknéss « is increased, was just described. As can be seen from Fig. 6, a perceptible
the diffracted power is transferred from tae= 1, m = 0 difference in the plots due to the different inhomogeneity
lowest order mode (see Fig. 3) to the= 2, m = 0 mode, profiles is observed.
the n = 4, m = 0 mode and to other higher order modes. Fig. 7 shows am = 1 (and m = 3) total-order power
One also notices the interesting behavior that at abesats.1  comparison between the two inhomogeneity profiles discussed
rad, b — a = 0.4 rad, then = 2, m = 0 mode power has in Fig. 6. As can be seen from Fig. 7, at= 5 rad (shell
reached a maximum value and decreases with further incretiieknessb — a = 0.5 rad), the presence of thise (r) linear
of the inhomogeneity shell thickness— a. Evidently, the taper for the(r, 8, ¢)-inhomogeneity profile of Case 3 causes
n = 2, m = 0 higher order mode is, itself, transferring energpn observable difference with the = 1 total-order power
to other higher order modes. This behavior is very commar the (6, ¢)-inhomogeneity profile that used a constant value

in planar diffraction gratings [23]. of Ae,(r) = 0.375 value. As the same multilayer algorithm
Fig. 5 shows plots of then = 1 total power (formed was used to calculate the = 5 (rad)m = 1 total power
by summing allm = 1, n = 1, 2, 3,---, mode powers) as plots, with the only difference being that a linear and constant

computed by using a multilayer analysis (dotted-line trianglé)e,.(r) function was used, one concludes that completely
and using a single-layer analysis (solid line). One notices thatrrect results can only be achieved in the generad (¢)-
the single and multilayer analyses give approximately the samBomogeneity case by using a multilayer analysis.
result up to about a shell thicknesstef a = 0.4 rad, but after It is interesting to compare the unit periodic cell formed
this value the multilayer analysis is needed for more accurdtg the spherical dielectric shell of the present section with the
results. Fig. 5 also shows the = 1, n = 1, 2, 3 order power unit cell of a planar crossed-dielectric diffraction grating whose
as calculated by a single-layer analysis. One observes thageating dimensions ara,, A For the spherical system using
the shell thicknes$ — «a increases, then = 1, n = 1, 2,3 the inner radius value of = &, the area of the spherical-unit
order power increases. cell is 47 2. If one chooses\, = f\y = 2./ma, the grating
Fig. 6 shows a plot of the total normalized power that resultll areas of the planar system and spherical one are equal.
when the(r, 8, ¢)-inhomogeneity profile of Case 3 was solvedror the present example, the inner surface of the dielectric
using a multilayer RCWT analysis and usiddr = 4 and shell hada = koa = (27/A)a = 5 rad, which thus leads
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5 - volume cells be used. Assuming six unknown field variables

§ 0.07 g"\.\ <'§,Z§-IT,$‘,"S’£EY”§£'E§7S for each MoM or FE algorithm volume cell, requires 762000

L ooosl single layer analysis) unknowns for the overall MoM or FE solution. The RCWT

g 0.05 (multi-layer analysis) algorithm requires that & x Pr) matrix equation be solved,

8 ool . m=1 Total Power.r=b where Pr = 4(2My + 1)(2I7 + 1). For the example of this

x i "y, ne (1,68,¢)-Inh. Shell, Av. Ag =375 aper,Mr = 4 and Iy = 5 and, thus, a matrix equation

o 003 ~ (multi- lysis) " pap

2 Y mltiaver analysis) involving Pr = 396 unknowns was needed to solve the

S oo |M=3 Total Power,r=b " .. +ba+ problem. Despite the fact that the RCWT algorithm requires a

© 77| (n0,0)- and (99)-Inh. Shells ™o SV eigen-analysis, the numerical requirements of the RCWT
50 51 5.2 53 54 55 algorithm are still much lower than that of the MoM or FE

Inner Radius a (radians ) analysis

Fig. 7. m =1 (andm = 3) total-order power comparison between the twvo There are several areas of future work for which the
inhomogeneity profiles discussed in Fig. 6. theory of this paper may be applied. First, this paper has
analyzed scattering from a centered electric-dipole source.

to A, = A, = (5/\/7)A = 2.82\. It is interesting to note The theory of this paper could be useo_l to s_tudy plane-wave
that this grating cell size is very typical of many analysegcattering from an inhomogeneous object, if one expanded
which are made of planar diffraction gratings. For exampl@n exterior incident plane wave in a Schelkunoff vector
in holographic applications, if two interfering plane wavegotential expansion, as is done to study scattering from a
make an angle of 10.21on opposite sides of a normal tohomogeneous dielectric sphere [3, Ch. 6], and then solved the
the holographic surface, a one-dimensional (1-D) diffractidigsulting RCWT equations which have already been presented.
grating of width A, = 2.82)\ is formed. Thus, one seesA second area of research concerns the regions which bound
that diffraction from the spherical-shell system studied in th#§€ inhomogeneous region. The present paper has analyzed
section is on the same scale size as diffraction that occé@$pherical inhomogeneous system in the simplest bounding
in many planar diffraction analyses. It is also interesting tease possible, namely the bounding case when the interior
note that the spherical-shell scattering analysis which waBd exterior regions to the inhomogeneous shell are uniform
studied in this section would, in the area of diffraction gratingotropic materials. There is no reason why, for example, the
theory, be classified as a thin-grating diffraction analysis. THiggion exterior to the inhomogeneous region couldn’t be part
follows as the spherical-shell thickness is less than the gratidga microwave system (e.g., cavity or waveguide section)
period and the percent of modulation for the spherical-sh& could consist of other scattering objects. In the case of a
Aeg /ey = 2.8/7 = 40%, which for planar diffraction grating Waveguide section, for example, one would chose waveguide
analysis is large. (Holograms have a depth of modulation ##dal fields as the fields exterior to the inhomogeneous
the order ofx 0.03%.) region, match EM boundary conditions between the SV field
solution and the exterior fields as has already been done
in this paper, and then solve the resulting RCWT matrix
equations to obtain the overall fields of the system. The

This paper has presented a RCWT analysis of the EMultilayer analysis also allows the Region-1 and Region-
radiation that occurs when a centered electric dipole excit®sboundaries to be nonspherical surfaces. The problem of
power and energy in a general 3-D inhomogeneous spherigatube of material embedded in a spherical material could
system. The formulation of this paper consisted of a multilayee solved by the spherical RCWT algorithm of this paper
SV analysis of Maxwell's equations in spherical coordinatassing the multilayer portion of the algorithm to describe the
(the SV analysis was expressed in terms of spherical EMenspherical surfaces of the cube. A third area of research
field variables) as well as a presentation of the EM fieldgould be to extend the SV analysis of (2)—(5) to apply to
which bounded on the interior and exterior sides of tha&n anisotropic material region. This problem of determining
inhomogeneous shell. A detailed description of the matrike EM fields of an anisotropic planar diffraction grating
processing which was involved with finding the final EM field$as already been studied with great success in [20]. There
of the system was given. Three numerical examples of tleno reason why a similar analysis cannot be made for the
RCWT method were studied. present spherical system. A fourth area of research would be

It is interesting to compare, for the example solved itb implement the RCWT algorithm on a high-performance
Section Ill, the numerical matrix size required by a method efassively parallel computer. Using the multilayer analysis,
moments (MoM) algorithm (or finite-element (FE) algorithmpne could solve the SV equations of each thin layer simulta-
with the numerical size required by the RCWT algorithm useageously on a parallel machine and, thus, achieve rapid solution
in this paper. For the material shell studied in this paper, tio¢ the overall EM scattering problem. Good load balance
material wavelength is typicall}’ = A/\/(e2 + Aeg)i2 = can be anticipated since the same-size SV analysis would be
A//(9.8)(1.3) = A\/3.56 free-space wavelengths. The mateperformed in each layer. It is finally noted that the RCWT
rial shell studied had an exterior raditis= 5.5 (rad)= kob = algorithm has been widely studied in its application to planar
(27r/)\)5 and, thus) = 3.12). The volume of the spherical diffraction gratings ([20] has an extensive reference list) and
shell is thusVg,en = 127.02. Using the MoM or FE algorithm, should be widely available to those who would like to use
volume cells which are’/10 on an edge, requires that 127 00C.

IV. SUMMARY AND CONCLUSION
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