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Dipole Scattering from a Three-Dimensional,

Inhomogeneous, Spherical Dielectric,
and Permeable System
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Abstract—This paper presents a rigorous coupled-wave-theory
analysis (RCWT) of the electromagnetic (EM) radiation, which
occurs when a centered electric dipole excites power and energy
in a general three-dimensional (3-D) inhomogeneous spherical
system. The formulation of this paper consists of a multilayer
state-variable (SV) analysis of Maxwell’s equations in spherical
coordinates (the SV analysis used transverse-to-r spherical EM-
field components), as well as a presentation of the EM fields
which exist in the interior and exterior regions (which bound
the inhomogeneous spherical system). A detailed description
of the matrix processing which is involved with finding the
final EM fields of the overall system is given. Three numerical
examples of the RCWT method are studied. The first example
presents EM scattering when a centered dipole radiates through
a uniform material shell. In this example, numerical results of
the RCWT algorithm are compared with numerical results as
obtained by a Bessel-function matching algorithm, and excellent
agreement was found between the two methods. The second
example presents centered dipole radiation when the spherical
system is a dielectric shell, which is inhomogeneous in the (�,
') directions, and the third example presents centered dipole
radiation when the spherical system is inhomogeneous in the
(r, �, ') directions. Several examples and plots of the power
diffracted into higher order modes by the inhomogeneity profiles
are given. As the thickness of the inhomogeneous dielectric shell
is increased, it is observed that, through diffraction, power is
increasingly depleted from lower order modes into higher modes.
The depletion of power from lower to higher order spherical
modes with increasing shell thickness is noted to be very similar
to the variation of diffraction-order power efficiency, which is
observed when the layer thickness of a planar transmission
diffraction grating is increased.

Index Terms—Diffraction, inhomogeneious, rigorous coupled-
wave theory, 3-D scattering.

I. INTRODUCTION

A N important and well-known problem in electromagnetic
(EM) theory is the problem of determining the scattering

that occurs when an EM wave is incident on a circular-
cylindrical or spherical object. These problems have been
extensively studied in the cases where: 1) the EM incident
wave is an oblique or nonoblique plane wave; 2) the incident
EM wave has been generated by a line source or dipole source;
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and 3) the circular or spherical object is a dielectric-coated
metallic object [1]–[5]. Concerning circular-cylindrical sys-
tems, the problem of determining plane-wave and line-source
scattering from eccentric circular dielectric systems (circular
dielectric cylinders of varying dielectric value whose axes are
not centered on a single line) has also been studied. Recently,
a complete solution to this problem has been obtained in [6],
which also gives a complete literature survey of scattering
from eccentric and centered circular-cylindrical dielectric sys-
tems. Wu [7], [8] studies the problem of plane-wave scattering
from circular, homogeneous, anisotropic, dielectric cylindrical-
shell systems. Concerning scattering from spherical systems,
Ren [9] studies scattering from anisotropic homogeneous
spherical systems and also studies Greens’ functions associated
with anisotropic homogeneous spherical systems. Ren [9]
gives a very complete literature survey of scattering from
isotropic and anisotropic spherical systems.

A problem concerning circular-cylindrical object scatter-
ing, which has further received a great deal of attention,
is the problem of determining the scattering and radiation
that occurs when the circular-cylindrical dielectric system
contains a region whose permittivity is inhomogeneous and
periodic in the azimuthal direction [10]–[12]. The solution
of this problem is of great interest in cylindrical-aperture
antenna theory [10] because of the fact that radial and az-
imuthal dielectric loading in front of a cylindrical-aperture
antenna can greatly alter and, therefore, possibly enhance the
radiation characteristics of the cylindrical-aperture antenna.
Elsherbeni and Hamid [10] study EM transverse-magnetic
(TM [electric field parallel to the cylinder axis]), scattering
from the inhomogeneous radial dielectric-shell permittivity
profile where , , ,
and are constants defined in [10], andand are cylindrical
coordinates. Homogeneous space occupies the interior and
exterior region to the dielectric shell, and the shell is assumed
to be homogeneous and infinite in the-axial direction. The
method of solution used by Elsherbeni and Hamid [10] consists
of: 1) solving Maxwell’s equations in Regions 1 and 3,
surrounding the dielectric shell in terms of Bessel functions;
2) solving the and inhomogeneous wave equation in
Region 2 in terms of Mathieu functions; and 3) matching
boundary conditions at Region–1 and Region–3 interfaces to
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determine all the unknown constants of the system. In [12],
Elsherbeni and Tew again study the case of TM scattering
from a dielectric cylinder, but they extend their analysis to
dielectric permittivity profiles where

.
Concerning the problem of EM scattering from

inhomogeneous-material systems, in a recent paper [13],
the author generalized the work of [10]–[12] and presented
an EM cyclindrical-solution algorithm to analyze radiation
and scattering from an isotropic [13] dielectric cylinder
system which has an arbitrary radial and azimuthal
profile rather than the profile used by [10]—[12]. The
solution profile in [13] was based on a recently developed EM
planar-diffraction grating algorithm called rigorous coupled-
wave theory (RCWT) [14]–[20]. The author [13] extended and
generalized the work of Elsherbeniet al. [10]–[12] and Wu
[7], [8] and extended the RCWT planar diffraction algorithm
[14]–[20] to handle the analysis of isotropic inhomogeneous
dielectric cylinders [13]. The algorithm of [13] studied the
case when the electric field is polarized parallel to the
cylindrical-material axis (TM case).

Concerning the problem of EM scattering from
inhomogeneous-material spherical systems, this author
has submitted a letter [21] describing how the RCWT
algorithm can be applied to the analysis of radiation and
scattering from a spherical inhomogeneous object. The letter
[21] presented the basic spherical equations necessary to
analyze an arbitrary three-dimensional (3-D) inhomogeneous
scatterer by the RCWT method, and also presented a simple
example of dipole radiation from an inhomogeneous dielectric
object, which was azimuthally homogeneous (varied in the

direction but had no dependence in thedirection). The
spherical RCWT analysis of this paper will extend the results
of [21] in the following ways. First, the analysis of this
paper will study examples where the inhomogeneous scatterer
has an inhomogeneous permittivity and permeability profile,
which, in addition to varying arbitrarily in the radial direction,
also varies arbitrarily in the and directions. In [21],
the inhomogeneity variation was only in the direction.
This case is much more challenging numerically than [21],
because matrix equations for all orders of and must
be solved rather than a matrix equation for just and
all . The second way that the results of [21] are extended
in this paper is that the basic spherical state-variable (SV)
equations and the interior–exterior Bessel-function equation
of [21] will be modified to the general case when the
inhomogeneous scatterer and EM-source excitation is periodic
in the coordinate over a region , where is an integer
( ) rather than being periodic over just ,
as was presented in [21]. This is particularly useful as only
a centered-line excitation is considered in this paper. The
third way that the results of [21] are extended is that full
radiated-power results for radiation from higher orderand

spherical Bessel–Legendre modes are given, whereas in
[21], power results were given only for modes.

This paper will be concerned with determining the EM
fields that result when a centered electric dipole radiates
inside a 3-D inhomogeneous-material system (see Fig. 1). This

Fig. 1. Geometry of the 3-D inhomogeneous spherical system.

problem may be viewed as either a material shielded-antenna
source problem or may be viewed as a material microwave-
cavity problem, where the material cavity is formed from
the inhomogeneous dielectric and permeable material which
surrounds the electric-dipole source.

II. RIGOROUS COUPLED-WAVE-THEORY FORMULATION

This section will be concerned with putting Maxwell’s
equations in spherical coordinates into a form for which the
RCWT formulation can be implemented. The spherical system
shown in Fig. 1 is considered here. All coordinates will be
assumed normalized as , , etc., where

, , is the free-space wavelength in
meters. In this figure, Region 1 ( ) is assumed
to be a uniform material with the relative permittivity and
relative permeability , Region 3 ( ) is assumed to be a
uniform material with the relative permittivity and relative
permeability , and Region 2 with , is assumed
to have an arbitrary inhomogeneous lossy relative permittivity

and is assumed to have an inhomogeneous lossy
relative permeability . For generality, one assumes
that EM radiation may impinge on the 3-D object from Region
3 (e.g., a plane wave) or from Region 1 (e.g., a dipole source).
Maxwell’s equations of Region 2 will now be put into SV
form. If and are substituted into the
Maxwell’s curl equations of Region 2, and the two Maxwell
curl equations are expanded into their-, -, and -field
components, one finds that the longitudinal radial electric- and
magnetic-field components may be expressed in terms of the
transverse , electric- and magnetic-field components as

(1)

where , , ,
, , and .

Substituting these equations into the remaining Maxwell curl
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equations, one finds

(2)

(3)

(4)

(5)

The concern will now be with developing a multilayer
RCWT analysis that can be used to solve (2)–(5) in Region 2.
To proceed, one divides Region 2, , into thin layers
of width , where . One assumes that each
layer has been made thin enough so that all inhomogeneous
functions in the radial coordinate on the right-hand side
(RHS) of (2)–(5) may be considered constant in the thin-shell
region and may be approximated by the midpoint value ofin
the thin layer. In each thin spherical shell, it is convenient to
introduce the local coordinates for ,

for .
These local coordinates will be used to express the final
SV equations in each cylindrical shell. In theth thin-shell
layer, (2)–(5) are put in SV form in the local coordinates
by expanding all field variables and inhomogeneous factors

(these functions are
assumed sampled at theth radial midpoint ) in a two-
dimensional (2-D) exponential Fourier series, collecting terms
together which have the same exponential coefficient factors,
and forming a set of first-order differential equations for
the mode amplitudes . The mode

amplitude expansion for , for example, is given
by ,
where , ,

may be called the azimuthal-grating wave vector
and may be called the azimuthal-grating period. The matrix
for a general inhomogeneous factor, say , for
example, is

where

are the 2-D Fourier coefficients of and

represents a typical matrix element of the overall matrix

note that is an ordered pair representing a single
integer in the matrix [same for ]. The matrices

for the differential operators and are given by the
diagonal matrices, respectively,

where is the Kronecker delta, and the matrices describing
the modal field amplitudes are given by column matrices e.g.,

( is transpose). Replacing each inhomo-
geneous factor, derivative operator, and field amplitude by
the appropriate matrix, the overall system SV matrix may be
found. The first right-hand term of (2), for example, is given by

where and matrices represent the factors and

, respectively. The matrix , which
was just formed, represents a square component sub-matrix of
the overall state matrix . All component, sub-matrices

of the overall state matrix are defined in the same way as

was . (Since the component submatrices can be defined
by inspection of (2)–(5), it is not necessary to list the

matrices specifically). The overall SV equations, determined
from (2)–(5) in the th thin-shell layer, is given by

(6)

where

(7)

If the overall SV equation is truncated with and
, then is a square matrix with
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. The solution of the overall SV
matrix solution is given by

where and are the eigenvalues

and eigenvectors, respectively, of the SV matrix . The
overall EM-field solution in each thin-shell region can be
found by adding a linear combination of the eigensolutions.
For example, if , , ,
then the field is given by

where

is the th eigenvector component of , in the overall

eigenvector, and are unknown EM-field expansion
coefficients.

Although a large matrix equation could be formed from
matching EM boundary conditions at , , and at
each thin-shell layer interface in the inhomogeneous region,
a more efficient solution method is to use a ladder approach
[18] (i.e., successively relate unknown coefficients from one
layer to the next) to express the coefficients of the th
thin-shell layer (located in the layer adjacent to ) in
terms of the coefficients (located in the layer adjacent
to ), and then match boundary conditions at and

interfaces to obtain the final unknowns of the system.
At the th and th interface, matching the tangential
magnetic and electric fields, one has

(8)

(9)

(10)

(11)

Letting , these equations may be
written

(12)

or

(13)

where the 1 superscript denotes matrix inverse. Substituting
successively, one has

(14)

Another important problem is to relate the fields of Region
1 (interior region) and Region 3 (exterior region) to the fields

of Region 2 (inhomogeneous region). The fields in Regions
1 and 3, as is well known, can be expressed in terms of an
infinite number oftransverse to electric(TE ) andtransverse
to magnetic(TM ) Schelkunoff spherical-vector potential
modes [3, Ch. 6]. These vector potential modes consist of
half-order radial Bessel and Hankel functions and consist of
Tesseral harmonics (products of Legendre polynomials and

exponential functions). The scattered field portions of the
Region–1 and Region–3 Bessel- and Hankel-function solution
are chosen to satisfy the usual spherical boundary conditions
of finiteness at the origin, and being an outgoing wave at
infinity. In this paper, the incident field in Region 1 is the
EM field of an infinitesimal dipole. The basic EM boundary-
matching procedure to be followed in this paper is to equate
the tangential electric fields at the interfaces and ,
eliminate unknown field constants in Regions 1 and 3 in favor
of the field constants in Region 2 from these equations, equate
the tangential magnetic fields at the interfaces and ,
substitute the electric-field matching Region 2 constants into
the magnetic-field matching equations. This general procedure
is precisely the one followed by [15], [18], [20] in the analysis
of diffraction from planar diffraction gratings. Equating the
common terms of of the and
field components at from Regions 1 and 2, one has

(15)

(16)

where

(17)

(18)

where

and

Letting ,
, ,
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and where are associated Le-
gendre functions [3] of order and , the coefficients

, , , and represent the exponential Fourier
series-expansion coefficients for the terms , ,

, and , respectively, on the interval
[ ]. In the present

analysis, the Fourier coefficients , , , and
have been determinedexactly by calculating higher order
derivatives of the Bessel-function integral representation given
in [22, eq. (9.1.20), p. 360]. The exact calculation of these
Fourier coefficients is an important step in order to ensure
overall accuracy of the entire RCWT algorithm. The terms

and

represent electric-field EM incident waves evaluated at ,
which emanate from Region 1. In this paper, it is assumed
that a centered electric dipole excites EM radiation in the
overall system and for this source it is found

, , and
is the strength of the electric-dipole source. In (15)–(18),

, are spherical Schelkunoff–Bessel func-
tions [3], the prime in (15)–(18) represents differentiation with
regard to the argument. For , the lower limits start at

since the Legendre polynomials are zero when .
The terms and represent the SV solution
in Region 2 in the th thin-shell layer region evaluated at

and are given by

(19)

(20)

When is infinite, the boundary matching equations given
by (15)–(20) are exact. When is truncated at a finite
value, and common coefficients of in (15)–(20)
are collected, (15)–(20) give a set
of equations from which the and can be expressed
in terms of the Region–2 unknown coefficients . Letting

, , , and be matrices representing (17),

(18), e.g., , where and

, letting
and for

, and letting ,

for and
, one finds the following matrix equation:

(21)

where is a matrix, is a

square matrix, and is
a column matrix.

To proceed further, one matches the terms common to
of the tangential magnetic field at the Region-1,

Region-2 interface at and finds

(22)

(23)

where

(24)

(25)

where

and

The terms and
represent the

magnetic-field incident waves which may emanate
from Region 1. In this paper,

and for

a centered electric-dipole source. The terms and
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represent the SV solution in Region 2 in theth
thin-shell layer region evaluated at and are given by

(26)

(27)

Equating common coefficients of in (22)–(27),
a similar matrix equation as was formed for the tangential
electric-field components may be formed for the tangential
magnetic-field components. One has

(28)

To proceed further, this paper’s objective now is to eliminate
the column matrix from (21) and, therefore, form
a single matrix equation for the coefficients alone. By
inspecting the matrix equation (21) and their definitions, one
notices that two distinct cases arise, namely the cases when

and the case when . In the case of ,
it turns out that the matrices and are nonsingular,

therefore, it is straightforward to invert and solve for

. For , one finds

(29)

The determination of and ( )
coefficients for the case requires special matrix
processing. One first notes for the case that

in (17), (18), and thus, the matrix
equations for and are decoupled from one
another. One also observes from (17), (18) that when
solving for either and , that the coefficients

of and are
multiplied by the first derivative Legendre polynomials

, which are even in
, whereas the coefficients of and

are multiplied by first derivative in
Legendre polynomials ,
which are odd in . This means that when determining
the , Region-1 coefficients and , that
the best numerical processing in (21) is to decompose

, , , for
into a sum of even and odd functions, and from the even
functions in (17), (18) determine and

and from the odd functions in (17), (18)

determine and .
The specific matrix processing that is carried out for, say,
the coefficients is as follows. After

decomposing and for into even
and odd functions of , is determined

by: 1) expanding the even function part of
and for in a cosine
series (The series expansion of for

depends on the coefficients
in Region 2 and the series expansion of

for depends on the incident EM-
source waves which emanate from Region 1.); 2) expanding
the first derivative Legendre polynomial ,

in a series; 3) equating
common coefficients of the cosine series ; and
4) from these equations, developing an
matrix equation, which upon matrix inversion expresses
the coefficients in terms of the

coefficients of Region 2 and incident
EM-wave coefficients of Region 1. The determination of the

coefficients is found by: 1) expanding

the odd-function part of and for
and the odd derivative Legendre polynomials ,

functions in a series; 2) equating
common coefficients of ; and 3) and then
forming an matrix equation which, upon matrix
inversion, expresses the coefficients in

terms of the coefficients of Region
2 and incident EM-wave coefficients of Region 1. After
following the above procedure, and combining the even-
and odd-matrix expressions for and

a matrix relation

is found between the overall

coefficients and the coefficients and
EM-incident-wave coefficients of Region 1. A similar even
and odd analysis allows a matrix relation
between the coefficients and the
coefficients of Region 2 and EM-incident-wave coefficients
of Region 1. Altogether the and coefficients for

in matrix form may be expressed as

(30)
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where the matrix is size

. Substituting from (29) ( ) and
of (30) ( ) into (28) one finds

(31)

where . For each , (31)
has rows.

The boundary matching analysis at the interface is
identical to that at and the boundary matching equations
at the interface are given by (15)–(31) if: 1) one replaces
Region-1superscripts withRegion-3superscripts; 2) one re-
places the spherical Schelkunoff–Bessel function with
the outgoing spherical Schelkunoff–Hankel function of the
second kind, namely ; 3) one replaces and

in (19), (20) with the thin-shell SV solution
evaluated at , namely

(32)

(33)

and 4) one sets all Region-3 incident source terms to zero since
EM energy in this paper is assumed to emanate only from a
Region-1 centered-dipole source. After algebra, it is found that
the Region-3 boundary equations are

(34)

where and where the
RHS of (34) for this paper is zero. For each, (34) has

rows. Using from (14), one
eliminates the column matrix and find

(35)
where . Including all
values of , (34) and (35) each represent

equations for . Thus, (34) and (35) represent
together, a matrix equation from which may
be determined. From knowledge of all other unknown
constants of the system may be determined.

Once all of the EM-field coefficients are determined, one
may calculate the power which is radiated in Regions 1 and
3 of the system. The radiated power, which is associated with
a given and spherical mode, is well known and the
specific formulas may be found in [3, Ch. 6]. In this paper,
numerical results will be given in terms of normalized power.
The normalized power of a given and spherical mode at
radial distance is defined here as the power which is radiated

by the and spherical mode into a sphere located at a radius
divided by the total power radiated by the centered dipole

when the centered dipole is in an infinite region whose material
parameters are those of Region 1, namelyand .

III. N UMERICAL RESULTS

In this section, the RCWT method of Section II is illustrated
by solving for the radiated and scattered EM fields, that result
when the Region-2 inhomogeneous-material shell is assumed
to have, as a specific example, the form

sgn

sgn

sgn

sgn

(36)

where sgn and sgn . For
this profile, . This inhomogeneity profile is a convenient
one to use, since if it is integrated over a spherical surface of
radius , its average or bulk value is always, regardless
of the value of or used. Using this dielectric
inhomogeneity profile, three cases will be studied—namely the
cases when: (Case 1);

(Case 2); and
(Case 3), where and

for , and . For all numerical
examples of this paper, the bulk material parameters will be
taken to be , , , , ,
and . The first case, which because of the small
values of and , may be called a homogeneous-profile
case, represents the application of the RCWT method to the
solution of the problem of determining the EM radiation that
occurs when a centered dipole radiates through a uniform
dielectric shell. Since this problem of EM radiation through
a homogeneous dielectric shell can be solved exactly by
matching Bessel-function solutions in Regions 1, 2, and 3,
comparison of the RCWT method with the exact Bessel-
function matching solution represents a numerical validation
of the RCWT method if close numerical results from the two
methods occur.

The second case, which may be designated a -
inhomogeneity-profile case, represents an inhomogeneous
example in which the dielectric shell is homogeneous in
the radial direction, but is inhomogeneous in theand
coordinates. This case will be solved by both a single-layer
RCWT algorithm and will be solved by a using multilayer
RCWT algorithm. The purpose of solving this second case
is to observe, in general, how much diffraction occurs in
higher order spherical modes when a reasonably largeand

inhomogeneity-material profile is present in the dielectric
shell. The purpose of comparing single-layer and multilayer
RCWT results is to observe the importance that the scale
factors of (2)–(5) have on the overall scattering solution. The
purpose is also to study how well the power conservation law
is obeyed numerically. Power conservation at different radial
distances is a good indication of the accuracy of the numerical
solution in a lossless system such as the present one.
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The third case, which may be designated a -
inhomogeneity-profile case, represents a solution of the RCWT
method under the most general conditions, namely when the
inhomogeneity variation occurs in the, , and coordinates.
The radial inhomogeneity variation has been chosen to vary
in such a way that the magnitude of the variation in
the inhomogeneity-profile changes linearly. Single and mul-
tilayer analyses have been studied in order to gauge the
effect of the radial inhomogeneity variation of the -
inhomogeneity-profile case relative to that of the -
inhomogeneity-profile case. The purpose of studying this case
is to see the effect, in general, that a fully 3-D inhomogeneity
variation has on diffraction and scattering into higher orders.
The purpose also of Case 3, as in Case 2, is to study how well
the power conservation law is obeyed numerically.

Fig. 2 shows a comparison of the normalized power radiated
through a uniform-material shell when calculated by a Bessel-
function matching algorithm (exact solution), when calculated
by a single-layer RCWT analysis, and when calculated by a
multilayer RCWT analysis. Ten layers ( ) were used to
make all multilayer calculations in this paper. In Fig. 2, the
normalized power by all methods has been calculated both at

and (The label means calculated at
and calculated at ). In Fig. 2, the outer radius is fixed
at (radians or rad) and the inner radiusis varied
from 5 to 5.45 rad. As can be seen from Fig. 2, one notices
that there is excellent numerical agreement between the three
methods used. One also notices from Fig. 2 that the
power results for each of the three methods are so close at

and that the two power curves for each method
cannot be distinguished from one another. In Fig. 2, the RCWT
algorithm was calculated using and . Because
the inhomogeneity factor in this case was very close to that of a
perfectly homogeneous shell, the RCWT algorithm could have
calculated the power of this case using a value of
and , which would have meant a significantly smaller
matrix equation than would have resulted from . A
larger matrix equation than necessary was solved for this case
in order to test the numerical stability of the algorithm and also
to test the sensitivity of the RCWT solution to error in the
Fourier coefficients. (Error in the Fourier coefficients would
arise for because numerical integration is used to
calculate the Fourier coefficients,
and thus, instead of the coefficients being exactly
zero, they would have some small value.) The matrix
solution showed no ill-conditioned effects from using a larger
than needed matrix size and showed no sensitivity to error in
the Fourier coefficients. A RCWT analysis was also carried out
using and . In this case, the RCWT algorithm
differed perceptibly from the Bessel matching solution. This
indicates that for accurate results, enough Fourier harmonic
terms must be included to correctly calculate the SV solution
of (2)–(5).

Fig. 3 shows a comparison of the total normalized powers
that occur when the dielectric shell is taken to be a uniform
layer (the power here is calculated at by Bessel-function
matching) and when the dielectric shell is taken to be a

-inhomogeneity profile with

Fig. 2. Normalized total power as obtained by the RCWT method compared
to the total normalized power as obtained by matching Bessel-function
solutions at the interfacesr = a and r = b.

Fig. 3. A comparison of the total normalized powers that occur when the
dielectric shell is taken to be a uniform layer (the power, here, is calculated at
r = a; b by Bessel-function matching) and when the dielectric shell is taken
to be a(�; ')-inhomogeneity profile with�"� = 2:8; �"'(r) = 0:4 (Case
2). Here, the power is calculated atr = a; b by a single-layer analysis and a
multilayer analysis. Them = 0; n = 1 order power is also shown.

[Case 2]. The power here is calculated at by a
single-layer analysis and a multilayer analysis. As can be seen
from Fig. 3, the presence of the -inhomogeneity profile
causes a marked difference in the total scattered power of the
inhomogeneous shell, despite the fact that the bulk dielectric
inhomogeneity profile was exactly the same as that of the
uniform homogeneous shell. It is also noticed from Fig. 3, that
for both the single and multilayer analyses, the law of power
conservation at and is obeyed to a reasonable
degree of accuracy. Also plotted in Fig. 3 is the
power at . It is noticed that the -
inhomogeneity-profile power at almost exactly equals
that of the total power at . This indicates that at ,
no power has been diffracted into higher order modes at the

interior boundary shell interface of the system. Fig. 3
also shows the power as calculated at .
From this plot, one observes that the power is
significantly lower than the total-power plots. This
clearly indicates that as the EM waves have radiated through
the dielectric shell, power has been diffracted into the,
higher order modes of the system. The dielectric shell is acting
very much like a planar diffraction grating, which is operating
in a transmission mode of operation.

Fig. 4 shows plots of the , and
mode order power at for the same -inhomogeneity
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Fig. 4. Plots of then = 2; m = 0 andn = 4; m = 0 mode order power for
the same(�; ')-inhomogeneity profile, as was studied in Fig. 3, are shown.
The n = 3; 5 (m = 0) orders were very small and not plotted.

Fig. 5. Plots of them = 1 total power (formed by summing allm = 1,
n = 1; 2; 3; � � � ; mode powers) as computed by using a multilayer analysis
(dotted-line triangle) and using a single-layer analysis (solid line) are shown.

profile as was studied in Fig. 3. The orders
were very small and not plotted. As can be seen from Fig.
4, as the inhomogeneous-shell-thickness is increased,
the diffracted power is transferred from the
lowest order mode (see Fig. 3) to the mode,
the mode and to other higher order modes.
One also notices the interesting behavior that at about
rad, rad, the mode power has
reached a maximum value and decreases with further increase
of the inhomogeneity shell thickness . Evidently, the

higher order mode is, itself, transferring energy
to other higher order modes. This behavior is very common
in planar diffraction gratings [23].

Fig. 5 shows plots of the total power (formed
by summing all , mode powers) as
computed by using a multilayer analysis (dotted-line triangle)
and using a single-layer analysis (solid line). One notices that
the single and multilayer analyses give approximately the same
result up to about a shell thickness of rad, but after
this value the multilayer analysis is needed for more accurate
results. Fig. 5 also shows the , order power
as calculated by a single-layer analysis. One observes that as
the shell thickness increases, the ,
order power increases.

Fig. 6 shows a plot of the total normalized power that results
when the -inhomogeneity profile of Case 3 was solved
using a multilayer RCWT analysis and using and

Fig. 6. Plot of the total normalized power that results when the
(r; �; ')inhomogeneity profile of Case 3 was solved using a multilayer
RCWT analysis and usingMr = 4 and Ir = 5 is shown. Also shown for
comparison, is the total power of a uniform shell system (Case 1 parameters)
and the total power when a(�; ') inhomogeneity profile was used with
�"'(r) set to a constant value of�"'(r) = :375.

. Also shown for comparison is the total power of a
uniform shell system (Case 1 parameters) and the total power
that results when a -inhomogeneity profile was used with

set to a constant value of . This value
of exactly equaled the average radial value of the

function of Case 3 over the interval ,
rad and rad. As can be seen from Fig. 6, the
linear taper causes little difference in total power to be seen
between the total power of the -inhomogeneity profile
of Case 3 and the total power of the -inhomogeneity
profile that used a constant value of . One
notices from Fig. 6 that power conservation was observed to
hold to a reasonable degree of accuracy. Fig. 6 also shows a
plot of the order power calculated at rad
for the two inhomogeneity profiles for which the total power
was just described. As can be seen from Fig. 6, a perceptible
difference in the plots due to the different inhomogeneity
profiles is observed.

Fig. 7 shows a (and ) total-order power
comparison between the two inhomogeneity profiles discussed
in Fig. 6. As can be seen from Fig. 7, at rad (shell
thickness rad), the presence of the linear
taper for the -inhomogeneity profile of Case 3 causes
an observable difference with the total-order power
of the -inhomogeneity profile that used a constant value
of value. As the same multilayer algorithm
was used to calculate the (rad) total power
plots, with the only difference being that a linear and constant

function was used, one concludes that completely
correct results can only be achieved in the general ( )-
inhomogeneity case by using a multilayer analysis.

It is interesting to compare the unit periodic cell formed
by the spherical dielectric shell of the present section with the
unit cell of a planar crossed-dielectric diffraction grating whose
grating dimensions are . For the spherical system using
the inner radius value of , the area of the spherical-unit
cell is . If one chooses , the grating
cell areas of the planar system and spherical one are equal.
For the present example, the inner surface of the dielectric
shell had rad, which thus leads
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Fig. 7. m = 1 (andm = 3) total-order power comparison between the two
inhomogeneity profiles discussed in Fig. 6.

to . It is interesting to note
that this grating cell size is very typical of many analyses
which are made of planar diffraction gratings. For example,
in holographic applications, if two interfering plane waves
make an angle of 10.21on opposite sides of a normal to
the holographic surface, a one-dimensional (1-D) diffraction
grating of width is formed. Thus, one sees
that diffraction from the spherical-shell system studied in this
section is on the same scale size as diffraction that occurs
in many planar diffraction analyses. It is also interesting to
note that the spherical-shell scattering analysis which was
studied in this section would, in the area of diffraction grating
theory, be classified as a thin-grating diffraction analysis. This
follows as the spherical-shell thickness is less than the grating
period and the percent of modulation for the spherical-shell

%, which for planar diffraction grating
analysis is large. (Holograms have a depth of modulation on
the order of 0.03%.)

IV. SUMMARY AND CONCLUSION

This paper has presented a RCWT analysis of the EM
radiation that occurs when a centered electric dipole excites
power and energy in a general 3-D inhomogeneous spherical
system. The formulation of this paper consisted of a multilayer
SV analysis of Maxwell’s equations in spherical coordinates
(the SV analysis was expressed in terms of spherical EM-
field variables) as well as a presentation of the EM fields
which bounded on the interior and exterior sides of the
inhomogeneous shell. A detailed description of the matrix
processing which was involved with finding the final EM fields
of the system was given. Three numerical examples of the
RCWT method were studied.

It is interesting to compare, for the example solved in
Section III, the numerical matrix size required by a method of
moments (MoM) algorithm (or finite-element (FE) algorithm)
with the numerical size required by the RCWT algorithm used
in this paper. For the material shell studied in this paper, the
material wavelength is typically

free-space wavelengths. The mate-
rial shell studied had an exterior radius (rad)

and, thus, . The volume of the spherical
shell is thus . Using the MoM or FE algorithm,
volume cells which are on an edge, requires that 127 000

volume cells be used. Assuming six unknown field variables
for each MoM or FE algorithm volume cell, requires 762 000
unknowns for the overall MoM or FE solution. The RCWT
algorithm requires that a matrix equation be solved,
where . For the example of this
paper, and and, thus, a matrix equation
involving unknowns was needed to solve the
problem. Despite the fact that the RCWT algorithm requires a
SV eigen-analysis, the numerical requirements of the RCWT
algorithm are still much lower than that of the MoM or FE
analysis.

There are several areas of future work for which the
theory of this paper may be applied. First, this paper has
analyzed scattering from a centered electric-dipole source.
The theory of this paper could be used to study plane-wave
scattering from an inhomogeneous object, if one expanded
an exterior incident plane wave in a Schelkunoff vector
potential expansion, as is done to study scattering from a
homogeneous dielectric sphere [3, Ch. 6], and then solved the
resulting RCWT equations which have already been presented.
A second area of research concerns the regions which bound
the inhomogeneous region. The present paper has analyzed
a spherical inhomogeneous system in the simplest bounding
case possible, namely the bounding case when the interior
and exterior regions to the inhomogeneous shell are uniform
isotropic materials. There is no reason why, for example, the
region exterior to the inhomogeneous region couldn’t be part
of a microwave system (e.g., cavity or waveguide section)
or could consist of other scattering objects. In the case of a
waveguide section, for example, one would chose waveguide
modal fields as the fields exterior to the inhomogeneous
region, match EM boundary conditions between the SV field
solution and the exterior fields as has already been done
in this paper, and then solve the resulting RCWT matrix
equations to obtain the overall fields of the system. The
multilayer analysis also allows the Region-1 and Region-
3 boundaries to be nonspherical surfaces. The problem of
a cube of material embedded in a spherical material could
be solved by the spherical RCWT algorithm of this paper
using the multilayer portion of the algorithm to describe the
nonspherical surfaces of the cube. A third area of research
would be to extend the SV analysis of (2)–(5) to apply to
an anisotropic material region. This problem of determining
the EM fields of an anisotropic planar diffraction grating
has already been studied with great success in [20]. There
is no reason why a similar analysis cannot be made for the
present spherical system. A fourth area of research would be
to implement the RCWT algorithm on a high-performance
massively parallel computer. Using the multilayer analysis,
one could solve the SV equations of each thin layer simulta-
neously on a parallel machine and, thus, achieve rapid solution
of the overall EM scattering problem. Good load balance
can be anticipated since the same-size SV analysis would be
performed in each layer. It is finally noted that the RCWT
algorithm has been widely studied in its application to planar
diffraction gratings ([20] has an extensive reference list) and
should be widely available to those who would like to use
it.
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